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Abslmct. The stability of the phase with one-step replica symmetry breaking is studied in 
fully connected neural networks with modified pseudohverse interactions. The interaction 
matrix has an intermediate form between the Hebb learning rule and the pseudo-inverse 
one. At low temperature there is a region of parameters where the one-step replica- 
symmetry-broken solution exists. Fluctuations around this solution are analysed by a replica 
group representations approach and it is found that the solution is stable for all ranges of 
the parameters where it exists. 

1. Introduction 

In the studies of the phenomenon of replica symmetry breaking (RSB), the problem 
of the one-step replica symmetry breaking ( IRSB) in the spin-glass-like statistical systems 
is of a special interest. Usually, IRSB is considered as a first approximation in the Parisi 
(1980) scheme for the description of the fully replica symmetry broken low temperature 
phase. A classical example is the Sherrington and Kirkpatrick (1975) model of a 
spin-glass for which the phenomenon of RSB is already well studied (Mezard et al1987). 

On the other hand, there are several systems for which it is known that i R s B  gives 
the exact solution. Among them are: the p-spin interactions (p+ a)) version of the SK 
problem (Gross and Mezard 1984), and the Potts spin glasses (Gross etall985, Cwilich 
ana Gfkpatrick iS8S). Recentiy, a similar phenomenon was discovered by Dotsenko 
and Tirozzi (1991) in a model of a neural network. 

It is commonly believed that the RSB phenomenon is not very important for neural 
networks, in contrast to spin-glasses where RSB is a crucial characteristic of the 
low-temperature phase. A classical example is the model proposed by Hopfield (1982). 
It was shown (see, for example, Amit et a/ 1987) that although at sufficiently low 
temperature the replica-symmetric (RS) solution is unstable against RSB, the instability 
is very weak and the true RSB solution is not much different from the RS one. 

For that model the phenomenon of RSB itself was proved to be qualitatively similar 
to that in the SK model with a magnetic field below the line of instability of the RS 
solution, known as the Almeida and Thouless line (AT-line) (1978). 

However the RSB phenomenon in the model of neural networks considered by 
Dotsenko and Tirozzi (1991) appears to be of qualitatively different kind. They showed 
that there is a certain range of parameters where the RS solution is still stable, but its 
entropy is negative (so that the zero-entropy line goes above the AT-line). It indicates 
that in addition to the stable RS solution there exists the other RSB solution, which 
'absorbs' a part of the entropy. It was shown that the structure of this RSB state is 
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essentially different from the 'traditional' one in the SK and the Hopfield models, since 
it does not appear as a result of instability of the RS solution. The corresponding RSB 
state was obtained to be IRSB one, although its stability remained an open question. 

A similar phenomenon was previously found by Krauth and Mezard (1989) (see 
also Gutfreund and Stein 1990) in the Gardner and Demda (1988) problem concerning 
the maximal capacity in neural networks with Ising interactions. 

Therefore it would be reasonable to expect that such 'exotic' i R s B  solutions might 
be a rather generai phenomenon for a certain ciass of sc-iike systems, ana it makes 
sense to investigate the stability of the ~ R S B  phase in a model of neural networks. 

The plan of the paper is the following. In section 2 the model is introduced and 
its mean-field free energy is obtained. In section 3 the iRSB solution is presented. In 
section 4 fluctuations around this solution are considered and the stability criteria is 
derived. In section 5 the stability of the i R s B  solution is proved. 

2. The model 

The model consists of N Ising spins uj ( i  = 1,. . . , N) and is described by the Hamil- 
tonian 

H = f E  Jijuiui. (1) 
ii 

The interaction matrix is taken to  be of the form 

where 

and ( p  = 1,. . . , p )  are quenched uncorrelated patterns, A is the parameter of the 
model. If A = 0 the model (l), (2) turns into the Hopfield one, and as A + m the structure 
of interactions matrix (2) approaches that of the pseudo-inverse model studied by 
Persona2 et nl (1985) and by Kanter and Sompolinsky (1987). The motivation to this 
particular choice of the J, has been given by Dotsenko ef ol(1991). It could be obtained 
from the traditional Hebb learning rule via local thermally noised iterative procedure, 
and the corresponding RS solution provides a substantial increase of the capacity and 
of the quality of the retrieval. 

The model will be studied in the thermodynamic limit where both N -f m and p + 
while the parameter a = p /  N remains finite. 

The free energy of the model is calculated in terms of the replica approach: 
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Introducing the fields a;, @: one gets 

The irrelevant factor containing det(i + A &  is omitted. The fields a, are connected 
with the usual overlaps 

(7) 
1 

m , = - I f K 4  
n i  

as follows 

a,  =- 1 1 (i + Ac?);tm,. 
N ”  

By standard calculations similar to those for the Hopfield model ( h i t  ef a/ 1987) 
after averaging over the [f one gets 

((Z”)>=j DE DQ D R  ew(-pNnf (a a, R ) )  (9 )  

where 
D R  = dRp,. 

0.1 
DQ = n dQ,, 

P.Y 

Here f is the mean field free energy of the model: 

-”f(a, Q, 8 )  

+ N log Tr, exp( - p F )  (10) 

When obtaining the above expression the n X n matrix 6 has been defined as follows: 

and the matrix R,, has been defined as a conjugate field to equation (13). 

condensed and therefore the parameter a’ in (10) has been defined as 
In the above calculations the pattern number 1 (i.e. I[:]) was assumed to be 

ap  I a:=,f’=‘,  
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3. Ooe-step replica-symmetry-broken solution 

Following Dotsenko and Tirozzi (1991) let us try a RSB ansatz for the fields R,,, Q,, 
as follows. Introduce the two-position parametrization of the replica set: group the n 
replicas in clusters of k, where 

a = [aI. a21 a ,=l , .  . . , n / k  a>= 1,. . . , k (14) 
where k is a parameter to be fixed by the saddle point equations. Here aI enumerates 
blocks of replicas and a2 enumerates replicas in the blocks. 

Using this parametrization let us define 

Substituting this ansatz in (10) one obtains 

a c  +-- f = z ~  +? cro+- krq, +- log( 1 - c) -- 
2 ZPk Z(1-C) 2pk 1-c 

1 2  a 4 a 

-'I Pk Dzlog[ Dz, exp( - ~ u 2 ) ( c o s h ( p u ) ) * ]  

D z = E e x p  -- 
dl ( 3 

and instead of qo, r l  we have introduced 

f = pk(qi -40) r = r , - r o  

The solutions of the saddle point equations obtained from the free energy (16) has 
been found by Dotsenko and Tirozzi (1991). It was shown that below the transition 
line T,,,(a)= T*-a, where T*=Z/ln(4/A) and a<< T2,  the IRSB solution can be 
represented as follows: 

R Z l  41-1 40;"- 1 r,= 1 

r =  
_,_* -~ 

(18) 
1 ( 1  - - I )  

a T* 

4. The stability criteria 

To investigate the stability of the solution let us introduce the variables 

R , = R f E ,  Q=p Q?j + K,P R,, = R?A + p.0 
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where a, Q$, R$ are the equilibrium values given by equations (15) and (18). 
Substituting a; Qma, R,, in (IO) and expanding to second order in the fluctuations, we 
obtain the variation -fA of the free energy with 

A =  1 H s & & + 2  x HGp)sP.+Es+ HiLp)(r6)P.&-2i 1 P.&p 
( = E I S  (.=!3)(76) (00)  

The submatrices (20)-(23) should be calculated with R,,, Qop taken in the form 

For the steepest descent method to be correct, it is necessary that the integral 
(15) and F,Tr,, in (26) is given by (]I), (12) respectively. 

, 
J De Ds Dp exp( -$A) 

should converge in the vicinity of the saddle point. 
There are two problems, we have to focus on. 

(27) 

m". c-.. . is io evaiuaie the mainx eiemenis of the su'imdiiices [2(3)-[23j, To do  

H ? ? , l ~ ~ l , ~ l ,  H?L(2,2), H??,2~(1,2), H??.2),1,3), H??,2)(3,4. The ~ R S B  case is more complicated. 

this, one should define different types of matrix elements. For example, in the RS 
case, the submatrices Hq" have five types of matrix elements namely 

The second is to reduce the quadratic form (19) to the quadratic form of the simplest 
type by admissible coordinate transformations. 

A reduction of the quadratic form (19) to the quadratic form of simplest type by 
admissible coordinate transformation in general cannot be reduced to a diagonalization 
of matrix 

f i m  f iar (y $ j). 
This is a complex matrix, but linear complex orthogonal transformations are not 

admissible for the integral (27). Therefore, one should combine real orthogonal transfor- 
mations of the coordinates E,, pmS, K,, with a subsequent proper shift of the integration 
contour in complex plane. 
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With QmS,  Rae taken in the form (15). the submatrices (20)-(23) have a complicated 
structure, therefore these two problems are non-trivial. A simplification occurs if one 
takes into account the fact that the submatrices are left invariant under the action of 
some permutation group. This group may be called the hierarchical tree (HT) group 
since it conserved the structure of the hierarchical tree connected with ansatz (15). 
The HT group is described in appendix 1. 

Different types of matrix elements can be obtained by consideration of HT group 
orbits in the sets {(a, S i ,  ( y ,  S)), {(a, (p ,  7 ) ) ) .  'These matrix elements are presented in 
appendix 2. 

The simplification of the quadratic form (19) can be achieved by choosing bases 
of the subspaces { E = } ,  {pme),  { K , ~ }  to be the bases of irreducible representations of the 
HT group. The other words, these bases are distinct families of fluctuation modes. 
Decomposition of the subspaces in irreducible components is described in appendix 3. 

It is well known (e.g. see Almeida and Thouless 1979, Amit et nl 1987), that only 
the replicon-like families of modes are dangerous in the sense of the stability, and 
they are denoted as R'"', R?), RP', RY' in appendix 3. The vectors of these families 
have non-zero eigenvalues only for the submatrices 

H?:o'(rai Hibe 1 s  ' (a + a ;  Y + S i .  
Using the information from appendices 1: 2 and table 1 these eigenvalues can be found: 
They are given by 

Table 1. Eigenvalues of matrices Aqq, A" for each replicon-like family 

Family Eigenvalue 

R" K , - 2 K 2 + K ,  
R; 
R i  L ,  -2L,+ L, 
R; 

L ,  -2L,+ L , + 2 k (  L , -  L , -  L4+ L 5 ) +  k 2 ( L , - 2 L , +  L,) 

L ,  -2L,+ L , + k ( L , -  L , -L ,+  L , )  
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means the average In equations (28)-(31) (...) means Gaussian average over z, (. . 
over zI with the weight 

exp ( (cosh(pu))' 

and U is given by (17). 

represented as follows: 
The contribution of modes of the replicon-like families to the integral (27) may be 

where A4, A' are given by equations (28)-(31), and dimR is the dimension of the 
irreducible representation R. 

According to equations (28)-(31) A: are always negative. Nevertheless, if A L > O  
for all R the integral (32) appears to be absolutely converging, since according to the 
definition of the matrix Qme (13) the integration over DK in'the integral (27) runs over 
a finite domain. Consequently, one may integrate over r and over q in any order. By 
integrations over r in (32) we find 

Hence, the integral (32) is dominated by the vicinity of the saddle point if 

1 +A;A%>O A',>O (33) 
for all families R = R"", RY), RF), RP). These inequalities with A;, A; from equations 
(28)-(31) are the stability criteria. 

5. The IRSB phase stability 

Let us consider the inequality (33) in the case, that the parameters a, qo, q , ,  r,, r l ,  k 
are given by (is). At first, we consider ihe vicinity ofthe transition iine TRss( a) = T* - a. 
In this region T* - T<< T*, k = 1 and the parameter p& is small: 

/3G=(=j"'<< T* T 1. 

This means that for the average ( ~ ( Z J ) ~ , ,  one has 

( f ( Z d ) q  = f k  =O) 
since the variable z ,  is always multiplied by the factor p f i  (with the only exception 
for exp(-z:/2)). So each inequality (33) is transformed to 

Integrating over z, one obtains 
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where 

is the Almeida-Thouless temperature, which defines the boundary of the stability 
domain of the RS phase ( h i t  et al 1987). 

In the region a << T 2  

T,,(a)<< T* 

therefore the IRSB phase is stable in the vicinity of the transition line. The correctiob 
to (34) induced by expansion of the stability criteria (equation (33)) in powers of 
p G ,  do not change this result. 

Now let us consider the case T<< T*, (I cc T. Then 

p.&-JIIT>>1 
k - a < <  1 

p u ~ p ( a + . & z , + ~ z ) = p + ~ z l + p ~ z .  

The averaging over z may be omitted, because p&<< 1. The averaging over z, is 
reduced to 

By this averaging rule, the stability criteria (equation (33)) can be reduced in the 
leading order in a to 

1-2rap  exp(-p)>O (for R'" families) 

1-9 4 & ap exp(-f) > 0 (for R'"' family). 

These inequalities are true if a<< T2,  and therefore the IRSB phase is stable in the 
region Tc< T*, a << T Z .  

6. Conclusions 

Thus, we have established the stability of the iRsB phase in the region T<< 1, a << T2. 
A line of the type of the AT-line was not found in this region. It is possible, that this 
Kiie is ioiaie: ii, ihe 
equation (18). 

At the same time, the IRSB phase is stable below the line T,(a)  = f T * - 2 a ,  where 
the entropy of the IRSB phase becomes negative (Dotsenko and Tirozzi 1991). The 
analogous phenomenon for the RS phase (the entropy is negative while the solution 
is still stable) has initiated a search for the IRSB phase. This phase is believed to absorb 
a part of the entropy. In our case, if the entropy sign change is not an artifact of the 
approximation used for the free energy evaluation the following question arises: what 
is the phase which 'absorbs' part of the entropy? Presumably it may be the two-step 
RSB (ZRSB) phase, and therefore an assumption that in fact we deal with a whole 
cascade of 'first-order' RSB phase transitions does not seem to be unrealistic. 

T<< a, .*here we do have ;1 sopG:ioii of ;he iype 
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Appendix 1 

The HT group can be represented as follows (e.g. see Mezard et a/ 1987): 

where (&)@'"/' is the direct product of the permutation group of k elements (S,) with 
itself n/ k times, and 6 means the semidirect product. 

Indeed we can permute both the replicas inside each cluster (it leads to the product 
of Sk by itself n l k  times) and the clusters of replicas among themselves (this leads to 

S"/k ti (S,)@"'X 

s n / k ) .  

Any element of the HT group may be written as follows 
g = ( g ( ' l .  (2) 

9 g, , . . . , g"*) 
where 

g""= sn ik  

gj2' c Sk 

The action of g on the replica set is given by 

ga = [g ("a , ,  gh:a21 

a = [ a , ,  a 2 1  

and g(')a,,gf!q are the results of the action of the groups Snik,Sr on the sets 
{ l , .  . ., n/k} and (1,. . ., k} respectively. 

i =  1,. . ., nlk 

where 

If h = ( h ( ' ] ;  h','', . . . , h$J then 
gh = (g(l)h(') .  , g(3], I h(2)  1 , . . . , g!$In/&?/'d 

This composition law means that the HT group is a semidirect product SnIk with 
(Sk)@'"'*. 

Appendix 2 

Independent parameters which define the matrices Aqq, 2'' are listed below. Only the 
matrix elements of the replicon-like families relevant for stability are represented. (The 
notation H(,p).(ra) = (aBIHly6) and the parametrization of the replica set (14) are 
used, superscripts (qq) ,  ( r r )  are omitted.) 

Intracluster matrix elements: 

([l, 1 1 , ~ 1 , 2 I I ~ l [ l , 1 1 , ~ 1 , 2 1 ~ = ~ ~  

([1,11,[1,2ll~l[1,11,[1.31)=~~ 

([I, 1],[1,2])fiI[1,31, [1,41)= K, 
([I, 11 , [1 ,21 I~ l [2 ,11 , [2 ,21 )=~4 .  



Appendix 3 

We have three different types of subspaces in the space ( { E = } ,  {pme},  {K,~}) of all modes 
which are not mixed by permutations of the replicas. 

The first type: n-dimensional subspaces 

{ P A  {&J 
which may be called diagonal subspaces. 

The second type: " ( k  - !!j2-dirr?ensiana! subspaces 

{Peel {K.d 

with n # p and a, p belonging to the same cluster. They may be called intracluster 
subspaces. Irreducible representations in this subspace would be marked by a super- 
script ( a ) .  
,." ine  third type: njn - kjjl-dimensionai subspaces 

{PW3} { K-p 1 
with n # p and a, p belonging to the different cluster. They may be called intercluster 
subspaces. Irreducible representations in this subspace would be marked by a super- 
script (e). 

Any subspace of the first type may be decomposed into a sum of three irreducible 
representations of the HT group. One of them, L, corresponds to a longitude mode, 
other A,, A, correspond to anomalous-like families of the modes. 

The subspaces of the second type may be decomposed into a sum of four irreducible 
components. The first three of them are equivalent to L, A,,  A,, while the remaining 
one appears to be a replicon-like family RI". 

The subspaces of the third type may be decomposed into a sum of six irreducible 
components. Three ofthem coincide with L, A,, A,, and three are replicon-like families 

The detailed review of their structure, dimensions and characters is to be published 
RY),  Rp), RI') 

3 .  

elsewhere. 
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